Contents and speakers

Overview of trustworthiness (Jindong Wang, 10min)

Robust machine learning (Jindong Wang, 40min) **Out-of-distribution generalization** (Haohan Wang, 40min)

Interpretability

(Haohan Wang, on behalf of Haoliang Li, 40min)

Trustworthiness in the era of large models (Jindong Wang, 40min)

The Importance of Interpretability From an application perspective

• In many applications, we need to know why

High/Low-frequency reconstructed Images

Each one of the RGB channels of the raw images are transformed independently, visualized as an image of three channels here. Only the real part is visualized. Both real and imaginary parts are used in the experiments. Wang, Haohan, Xindi Wu, Zeyi Huang, and Eric P. Xing. "High-frequency component helps explain the generalization of convolutional neural networks." In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 8684-8694. 2020.

reconstructed

a predetermined radius

Misalignment between human and model

Wang, Haohan, Xindi Wu, Zeyi Huang, and Eric P. Xing. "High-frequency component helps explain the generalization of convolutional neural networks." In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 8684-8694, 2020.

0.2

0.0

0.4

0.6

0.8

original image

low-frequency reconstructed

Additional examples

Wang, Haohan, Xindi Wu, Zeyi Huang, and Eric P. Xing. "High-frequency component helps explain the generalization of convolutional neural networks." In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 8684-8694. 2020.

Motivation: Interpretability

 Adversarial Robustness seems to remind us about one in applying deep learning in practice:

- When a model is making prediction, the features it use can be quite arbitrary
 - So, we probably need to have a detailed look at the decision process

Backprop and Guided Backprop

• Directly using the gradient

• Include both positive values and negative values

Backprop and Guided Backprop

- Maybe we don't care that much for the features that contribute negatively
 - How do we get rid of it?
 - Maybe just setting it to zeros
- Guided Backprop

gradient

only positive gradient

Class Activation Map

• Visualizing the decision for convolutional neural networks

• As the beginning work, the model has to follow certain structures

GradCam

• Connecting later layers to the convolutional layers with gradient

GradCam

• Results Comparison

(a) Original Image

(b) Guided Backprop 'Cat'

(c) Grad-CAM 'Cat'

(g) Original Image

(i) Grad-CAM 'Dog'

Model's understanding of certain labels

- Use to evaluate the model's understanding of the whole class
 - Given a (random) starting point
 - Update the samples following the gradient
 - Until the model predicts the resulting images with full confidence

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps

goose

- Explaining by Removing: A Unified Framework for Model Explanation
 - Many different papers in the community for interpretability

Method	Removal	Behavior	SUMMARY
IME (2009)	Separate models	Prediction	Shapley value
IME (2010)	Marginalize (uniform)	Prediction	Shapley value
QII	Marginalize (marginals product)	Prediction	Shapley value
SHAP	Marginalize (conditional/marginal)	Prediction	Shapley value
KernelSHAP	Marginalize (marginal)	Prediction	Shapley value
TreeSHAP	Tree distribution	Prediction	Shapley value
LossSHAP	Marginalize (conditional)	Prediction loss	Shapley value
SAGE	Marginalize (conditional)	Dataset loss (label)	Shapley value
Shapley Net Effects	Separate models	Dataset loss (label)	Shapley value
Shapley Effects	Marginalize (conditional)	Dataset loss (output)	Shapley value
Permutation Test	Marginalize (marginal)	Dataset loss (label)	Remove individual
Conditional Perm. Test	Marginalize (conditional)	Dataset loss (label)	Remove individual
Feature Ablation (LOCO)	Separate models	Dataset loss (label)	Remove individual
Univariate Predictors	Separate models	Dataset loss (label)	Include individual
L2X	Missingness during training	Prediction mean loss	High-value subset
INVASE	Missingness during training	Prediction mean loss	High-value subset
LIME (Images)	Default values	Prediction	Linear model
LIME (Tabular)	Marginalize (replacement dist.)	Prediction	Linear model
PredDiff	Marginalize (conditional)	Prediction	Remove individual
Occlusion	Zeros	Prediction	Remove individual
CXPlain	Zeros	Prediction loss	Remove individual
RISE	Zeros	Prediction	Mean when included
MM	Default values	Prediction	Partitioned subsets
MIR	Extend pixel values	Prediction	High-value subset
MP	Blurring	Prediction	Low-value subset
EP	Blurring	Prediction	High-value subset
FIDO-CA	Generative model	Prediction	High-value subset

- The methods typically have three core steps
 - How/what to remove the features
 - What to observe
 - Summarizing the observation to users

• Feature Removal

- Zero-ing features: $F(x, S) = f(x_S, 0)$
- Setting features to a default value $r: F(x, S) = f(x_S, r_{\overline{S}})$
- Sampling from a conditional generative model ~ $p_G(X_{\overline{S}}|X_S)$: $F(x, S) = f(x_S, \tilde{x}_{\overline{S}})$
- Marginalizing with condition: $F(x, S) = \mathbb{E}[f(x)|X_S = x_S]$
- Marginalizing with marginal: $F(x, S) = \mathbb{E}[f(x_S, X_{\overline{S}})]$

Model Behavior

• What to observe after removing the features

- at the prediction level *(local explanations)*: Given an input $x \in \mathcal{X}$, study F(x, S), that is how removed features are impacting a prediction higher or lower;
- at the prediction loss level *(local explanations)*: Given an input *x* and its true label *y*, study $-\ell(F(x, S), y)$, that is how some features are making the prediction more or less correct.
- the average prediction loss *(local explanations)*: Given an input *x* and the label's conditional distribution p(Y|X = x), study $-\mathbb{E}_{p(Y|X=x)}[\mathcal{E}(F(x, S), Y)]$, that is how a certain set of features can correctly predict what could have occured on average. Can be useful with uncertain labels.
- dataset loss wrt label *(global explanations)*: How much the model's performance degrades when different features are removed, i.e. $-\mathbb{E}_{XY}[\ell(F(X_S), Y)]$
- dataset loss wrt output *(global explanations)*: What are the features' influence on the model output (rather than on the model performance), i.e. $-\mathbb{E}_X[\ell(F(X_S), F(X))]$

Summary Techniques

- To provide a concise summary of the information we obtained
 - Examples:
 - Feature attribution:
 - Give every feature a score
 - Feature section
 - Select a subset of features

So, now, we should possess the knowledge of hundreds of model explanation methods

• Summary of the techniques by "Explaining by Removing" at 2020

Just in case you want to try a submission in this field but not sure about what to do :D

Model behavior
Prediction
Prediction loss
Prediction mean loss
Dataset loss
Prediction loss (output)
Dataset loss (output)

An Interesting Question

Do we need better interpretability methods or better model?

Adversarially Robust Models

- Adversarially robust model might learn perceptually aligned representations
 - (Santurkar et al. 2019)

Adversarially Robust Models

- Adversarially robust model might learn perceptually aligned representations
 - (Santurkar et al. 2019)

Potential connection between interpretability and adversarial robustness

Adversarially Robust Models

- With this connection, let's look at these results again
 - It seems these results are just supposed to happen

Following Slides are from Haoliang Li

Shared causality across domains.

But can we believe such

appealing visualizations?

Kim et al. SelfReg: Self-supervised Contrastive Regularization for Domain Generalization. ICCV 2021.

Can existing explanation methods faithfully represent model decisions?

Question: What are colorful pieces on the doughnut?

Pred: powder

(Confidence 16%↓)

No! Don't be misled by appealing visualizations!

Question: What is the girl eating?

Pred: donut

Pred: donut (Confidence 12%↑)

Liu et.al. Rethinking Attention-Model Explainability through Faithfulness Violation Test, ICML 2022. https://arxiv.org/abs/2201.12114

The reason is simple:

Recall the formulation of attention mechansims

$$A = \operatorname{softmax}(\frac{\boldsymbol{Q} \cdot \boldsymbol{K}^{T}}{\sqrt{d_{h}}})$$

$$\boldsymbol{O} = \boldsymbol{A} \cdot \boldsymbol{V}$$
 (Vaswani et al., 2017)

- 1. Attention weights are always non-negative since they are the output of softmax function.
- 2. So they cannot differentiate the direction of feature impacts, *i.e.*, impact polarity

This heavily degrades the faithfulness of attention explanations:

Most explanation methods fail to suffer from the polarity consistency issue.

(a) LSTM+DotAtt on QQP dataset

(b) BUTD on VQA 2.0 dataset

(c) LXMERT on GQA dataset

What did a single unit (neuron) learn?

H. Park, et al. "NeuroCartography: Scalable Automatic Visual Summarization of Concepts in Deep Neural Networks ," TVCG, 2021.

•

• F. Hohman, et al. "SUMMIT: Scaling Deep Learning Interpretability by Visualizing Activation and Attribution Summarizations," TVCG, 2019.

Take the last convolutional layer in ResNet as an example,

(a) Top activated neurons under different predictions.

•

(b) Visual concepts shared by different neurons.

Liu, Y., Tian, C. X., Li, H., & Wang, S. (2022). Generalization Beyond Feature Alignment: Concept Activation-Guided Contrastive Learning. arXiv preprint arXiv:2211.06843.

We proposed concept-level contrast (CoCo) to learn features beyond conventional feature-level contrast.

Liu, Y., Tian, C. X., Li, H., & Wang, S. (2022). Generalization Beyond Feature Alignment: Concept Activation-Guided Contrastive Learning. arXiv preprint arXiv:2211.06843.

•

With CoCo, concept evolution happens

Diversified features

Code / Logic not covered during testing -> Bugs may hide there This could also happen in neural networks!

DeepXplore: Automated Whitebox Testing of Deep Learning Systems. Best paper in SOSP'17

We proposed NCDG to actively activate the inactive neurons during training

with the neuron coverage maximization loss.

If a neuron is inactive (always low-value output) during the **WHOLE** training process.

Once it gets activated (outputs high-value) during the evaluation, errors may happen.

Tian, Chris Xing, et al. "Neuron Coverage-Guided Domain Generalization." *IEEE Transactions on Pattern Analysis and Machine Intelligence* (2022).

Neuron Dissection before & after (being activated)

Model trained on PACS-Sketch domain

ResNet-18 block 3 unit 170

ResNet-18 block 2 unit 20