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The Importance of Interpretability

From an application perspective
* In many applications, we need to know why
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Motivation: Interpretability

* Adversarial Robustness seems to remind us about one in applying
deep learning in practice:

Original image Adversarial noise Adversarial example

|
| +0.04x N +.007 x
ey
S iy ,'-," A
Dermatoscopic image of a benign Perturbation computed Combined image of nevus and x -+
melanocytic nevus, along with the by a common adversarial attack perturbation and the T sien(V..J (0. x .
diagnostic probability computed attack technique. diagnostic probabilities from g ( z ( 2= y)) 681gn(vm J(B, €T, y))
by a deep neural network. See (7) for details. the same deep neural network. “panda” “nematode” “gibbon”
[ | Benign | Benign 57.7% confidence 8.2% confidence 99.3 % confidence
! IIIII Malignant | Malignant

||||||

* When a model is making prediction, the features it use can be quite
arbitrary

* So, we probably need to have a detailed look at the decision process




Backprop and Guided Backprop

* Directly using the gradient

* Include both positive values and negative values



Backprop and Guided Backprop

* Maybe we don’t care that much for the features that contribute
negatively

* How do we get rid of it?
* Maybe just setting it to zeros

* Guided Backprop

gradient only positive gradient



Class Activation Map

* VVisualizing the decision for convolutional neural networks
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* As the beginning work, the model has to follow certain structures




GradCam

* Connecting later layers to the convolutional layers with gradient
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GradCam

* Results Comparison

(a) Original Image (b) Guided Backprop ‘Cat’”  (c) Grad-CAM ‘Cat’

(g) Original Image  (h) Guided Backprop ‘Dog’ (i) Grad-CAM ‘Dog’



Model’s understanding of certain labels

* Use to evaluate the model’s
understanding of the whole class

e Given a (random) starting point

e Update the samples following the
gradient

e Until the model predicts the
resulting images with full
confidence

Deep Inside Convolutional Networks: Visualising Image Classification
Models and Saliency Maps




Explaining by Removing

* Explaining by Removing: A Unified Framework for Model

Explanation

* Many different papers in the community for interpretability

METHOD

REMOVAL

BEHAVIOR

SUMMARY

IME (2009)

IME (2010)

QII

SHAP

KernelSHAP
TreeSHAP
LossSHAP

SAGE

Shapley Net Effects
Shapley Effects
Permutation Test
Conditional Perm. Test
Feature Ablation (LOCO)
Univariate Predictors
L2X

INVASE

LIME (Images)
LIME (Tabular)
PredDiff

Occlusion

CXPlain

RISE

MM

MIR

MP

EP

FIDO-CA

Separate models
Marginalize (uniform)
Marginalize (marginals product)
Marginalize (conditional/marginal)
Marginalize (marginal)
Tree distribution
Marginalize (conditional)
Marginalize (conditional)
Separate models
Marginalize (conditional)
Marginalize (marginal)
Marginalize (conditional)
Separate models
Separate models
Missingness during training
Missingness during training
Default values
Marginalize (replacement dist.)
Marginalize (conditional)
Zeros
Zeros
Zeros
Default values
Extend pixel values
Blurring
Blurring
Generative model

Prediction
Prediction
Prediction
Prediction
Prediction
Prediction
Prediction loss
Dataset loss (label)
Dataset loss (label)
Dataset loss (output)
Dataset loss (label)
Dataset loss (label)
Dataset loss (label)
Dataset loss (label)
Prediction mean loss
Prediction mean loss
Prediction
Prediction
Prediction
Prediction
Prediction loss
Prediction
Prediction
Prediction
Prediction
Prediction
Prediction

Shapley value
Shapley value
Shapley value
Shapley value
Shapley value
Shapley value
Shapley value
Shapley value
Shapley value
Shapley value
Remove individual
Remove individual
Remove individual
Include individual
High-value subset
High-value subset
Linear model
Linear model
Remove individual
Remove individual
Remove individual
Mean when included
Partitioned subsets
High-value subset
Low-value subset
High-value subset
High-value subset




Explaining by Removing

* The methods typically have three core steps
* How/what to remove the features
* What to observe
 Summarizing the observation to users

1. Feature removal 2. Model behavior 3. Summary technique
‘ Prediction . . .
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Explaining by Removing
* Feature Removal

e Zero-ing features: F(x, S) = f(xg, 0)

» Setting features to a default value r: F(x, S) = f(xs, r5)

» Sampling from a conditional generative model ~ pg(Xz|Xs): F(x, S) = f(xs, X5)
 Marginalizing with condition: F'(x, S) = E[f(x)|Xs = xs]
» Marginalizing with marginal: F(x, ) = E[f(xs, X3)]



Model Behavior

* What to observe after removing the features

e at the prediction level (local explanations): Given an input x € X, study F'(x, S), that is how
removed features are impacting a prediction higher or lower;

« at the prediction loss level (local explanations): Given an input x and its true label y, study
—Z(F(x, S), y), that is how some features are making the prediction more or less correct.

» the average prediction loss (local explanations): Given an input x and the label’s conditional
distribution p(Y|X = x), study —E,y|x=x [£(F(x, S), Y)], that is how a certain set of features can
correctly predict what could have occured on average. Can be useful with uncertain labels.

» dataset loss wrt label (global explanations): How much the model’s performance degrades when
different features are removed, i.e. —Exy[Z(F(X5s), Y)]

e dataset loss wrt output (global explanations): What are the features’ influence on the model output
(rather than on the model performance), i.e. —Ex[Z(F(Xs), F(X))]



Summary Techniques

* To provide a concise summary of the information we obtained

* Examples:

e Feature attribution:
* Give every feature a score

e Feature section
e Select a subset of features

So, now, we should possess the knowledge of hundreds of model
explanation methods



Explaining by Removing

* Summary of the techniques by “Explaining by Removing” at 2020

Summary technique
Feature attribution Feature selection
r L 1

Remove Include Mean when Shapl | Additive High value Low value Partitioned
individual individual included apley value model subset subset subsets

Occlusion
Zeros CXPlain RISE MM

LIME

Default values
(images)

Extend pixels MIR

Blurring EP MP

Generative

Just in case you want to try a submission in
this field but not sure about what to do :D
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(uniform) IME 2010

Feature removal

Marginalize
(marginals ail
product)

Marginalize nt SHAP
(marginal) KernelSHAP

PredDiff SHAP
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Shapley Effects
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Model behavior ® Prediction  m Prediction loss t m Dataset loss (output)



An Interesting Question

-

Do we need better interpretability methods or better model?

\_




Adversarially Robust Models

* Adversarially robust model might learn perceptually aligned

representations
« (Santurkar et al. 2019)

Targeted attack
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Adversarially Robust Models

* Adversarially robust model might learn perceptually aligned

representations
« (Santurkar et al. 2019)
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Potential connection between interpretability
and adversarial robustness

. Interpretability Interpretability
[Courlterfactual i AdversanalT\js:}——{ (gradient-based) ]4[ (removal-based)

Master Equation ]

1 .

i . Fairness

argmin— E maxxr,d(x/x)sel(f(x ;0),y) ness }

n ’ »

6 (x)EXY) (Outcome Discrimination)
Master Equation ]
Intervention 1 . . Beyond Domain Generalization
Domain Generalization arg;nm; L(f(x;0)),y) — Al(h(fi (x; 6)),d) i\
(xy)EXY)

(bias in data)
Master Equation ] \
argmin Z a(x,y,0)l0(x),y) fairn'ess . ’ Domain Adaptation ]
PO, 2% (Quality Disparity)
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Adversarially Robust Models

* With this connection, let’s look at these results again
* It seems these results are just supposed to happen

Targeted attack

original

23
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Interpretability via attention explanations

, _ But can we believe such
Shared causality across domains. , . o
appealing visualizations?

Sketch

Photo Art Painting

Input

v

Explanation

Kim et al. SelfReg: Self-supervised Contrastive Regularization for Domain
Ceneralization. ICCV 2021.



Interpretability via attention explanations

Can existing explanation methods faithfully represent model

decisions?
Question: What are colorful pieces on the doughnut?

fon

Question: What is the girl eating?

. I ) .
Pred: powder Pred: powder No! Don’t be misled by
(Confidence 16%!)  3ppealing visualizations!

Mask Liu et.al. Rethinking Attention-Model

|:> ) x Explainability through Faithfulness
S Violation Test, ICML 2022.
https://arxiv.org/abs/2201.12114
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Pred: donut Pred: donut
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Interpretability via attention explanations

The reason is simple:

> Recall the formulation of attention mechansims
- KT
)

V dn (Vaswani et al., 2017)

A = softmax(

0=A-V

differentiate the direction



Interpretability via attention explanations

This heavily degrades the faithfulness of attention explanations:

RawAtt 1.0 0.6 0.2 0.7 0.4 0.2 0.1 0.0 0.1 X\ Because they cannot
AttGrad -0.7 -0.4 -0.0 0.8 1.0 0.4 0.2 0.1 0.2 /

/ differentiate the

AttiN' 1.0 0.8 0.4 0.9 0.8 0.2 0.0 0.0 0.0 X . . 1
impact polarity!!
InputGrad -0.6 -0.1 0.5 1.0 0.7 0.1 0.0 -0.0 0.0 /

IG EEEE -0.1 0.1 pmtanOess 0.2 0.0 0.0 0.0

-1.0 -0.5 0.0 0.5 1.0



Interpretability via attention explanations

Most explanation methods fail to suffer from the polarity consistency
Issue.
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Interpretability via neuron explanations

What did a single unit (neuron) learn?

Neuron Neuron

mixed4c-460 mixed4c-483
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H. Park, et al. “NeuroCartography: Scalable
Automatic Visual Summarization of Concepts in
Deep Neural Networks ,” TVCG, 2021.

: o I

white wolf O ® @ °%°

white wolf
)
l" N

. R
ointy ear
pality \ white fur

F. Hohman, et al. “SUMMIT: Scaling Deep Learning
Interpretability by Visualizing Activation and
Attribution Summarizations ,” TVCG, 2019.



Interpretability via neuron explanations

Take the last convolutional layer in ResNet as an example,
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(a) Top activated neurons under different predictions.
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(b) Visual concepts shared by different neurons.

Liu, Y., Tian, C. X,, Li, H., & Wang, S. (2022). Ceneralization Beyond Feature Alignment:
Concept Activation-Cuided Contrastive Learning. arXiv preprint arXiv:2211.06843.



Interpretability via neuron explanations

We proposed concept-level contrast (CoCo) to learn features beyond
conventional feature-level contrast.

______________________

z {00000 ‘OO0000! =+ vt concept states
f ? C{C%g& C{C\%g& Z*  feature
encoder encoder
¢ ? encoder encoder
1 |
* T & xt input
(a) Element-wise Feature Contrast (b) Concept Contrast (CoCo)

Liu, Y., Tian, C. X,, Li, H., & Wang, S. (2022). Generalization Beyond Feature Alignment:
Concept Activation-Cuided Contrastive Learning. arXiv preprint arXiv:2211.06843.



Interpretability via neuron explanations

With CoCo, concept evolution
happens

PACS

VLCS

CondCAD +CoCo SelfReg+CoCo

#125
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Diversified features
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Interpretability via neuron explanations

Code / Logic not covered This could also
during testing -> Bugs may happen in neural
hide there networks!

Input (x=0)
Neurons are not covered?

if (x == Oxdeadbeef)

/N

No Yes
/* no bugs */ /* buggy code */

DeepXplore: Automated Whitebox Testing of Deep Learning Systems. Best paper in SOSP’17



Interpretability via neuron explanations

We proposed NCDG to actively activate the inactive neurons during training

with the neuron coverage maximization loss. @ Il

-
-
-
-

If a neuron is inactive | radientvector
( always low-value output) |
during the WHOLE training process.

Once it gets activated (outputs high-value)
during the evaluation,
errors may happen. [ ]

3

Tian, Chris Xing, et al. "Neuron Coverage-Guided Domain Generalization." /EEE
Transactions on Pattern Analysis and Machine Intelligence (2022).




Interpretability via neuron explanations

Neuron Dissection before & after (being activated)

ART PAINTING CARTOON

DeepAll

NCDG

DeepAll

NCDG

ResNet-18 block 3 unit 170

DeepAll

NCDG

DeepAll

PHOTO ART PAINTING CARTOON

ResNet-18 block 2 unit 20



