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Robustness (domain generalization and more)
• Usually studied over benchmarks (that are constructed by the research

community)

BDD(clear,daytime) BDD(rest)Caltech-256 DSLR

MNIST SVHN ImageNet ImageNet-Sketch
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Variants of Cross-Domain Robustness 
• Different study scenarios defined over partition of the data
• Domain adaptation

• Using (unlabeled) data from the test domain
• (Ben-David 2007)

• Domain generalization
• Using partitions of data in the train domains
• (Muandet et al., 2013)

• Cross-domain generalization
• Not using any extra information
• (Wang et al, 2019)
• Used as the setup of this talk

train test

shape-domain; color-label

train test

train test 3Wang, Haohan, et al. "Learning robust representations by projecting superficial statistics out." 7th International 
Conference on Learning Representations, ICLR 2019. 2019.



For two arbitrary domains/distributions?
• Maybe not

MNIST FashionMNIST ImageNetCIFAR

So, there should be some regulations about what datasets can be used to study cross-
domain robustness. 
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• On the theoretical end

• Preliminary:
• A standard generalization error bound of supervised machine learning

Conventional Machine Learning Generalization

𝜀 𝜃 ≤ ̂𝜀 𝜃 + 𝜙 Θ, 𝑛, 𝛿

Expected error during test Empirical error during training Other technical terms
• hypothesis space,
• number of samples
• probability of this bound

Wang, et al., Toward learning human-aligned cross-domain robust models by countering misaligned features. UAI 2022 5



• On the theoretical end
• “Similar but different” is barely rigorously defined
• Domain Adaptation Bounds

• (Ben-David et al., 2010) (Mansour et al., 2009) (Germain et al., 2016) (Zhang et al., 2019) (Dhouib 
et al., 2020)

Domain Adaptation:
a study across similar but different domains

𝜀𝐏! 𝜃 ≤ ̂𝜀𝐏" 𝜃 + 𝜙 Θ, 𝑛, 𝛿 + 𝐷" 𝐏#, 𝐏$ + 𝜆

Divergence Between Distributions (estimable term) Learnable nature of 
the problem 

(not estimable)

Wang, et al., Toward learning human-aligned cross-domain robust models by countering misaligned features. UAI 2022 6



Domain Adaptation
Domain Adversarial Neural Networks (Ganin et al 2016)

• Design Rationale

• Limitations
• methods fail to generalize in certain closely related source/target pairs, e.g., digit 

classification from MNIST to SVHN (Ganin et al 2016)
• Hypothesis of misaligned labelling function

• (Zhao et al 2019) (Wu et al 2019)

small empirical source error

small divergence term
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Domain Adaptation
the hypothesis of misaligned labelling function
• Domain adversarial neural network will not work if the labelling function

shifts from training domain to test domain
• (Zhao et al 2019)

• However, a human might prefer that samples across similar but different
domains will have a shared labelling function
• After all, there is a reason both of these digits are 2!

MNIST SVHN 8



Similar but Different: intuitively
• Similar: there is a shared labelling function
• Different: the training domain has an additional labelling function

90

0.5

1.0

1.0 2.0 3.0
0.0

Train Domain

Test Domain• What ERM is like to pick up 
(in this example)

Robust labelling
function



Data space: 𝒳

Similar but Different: formally

10

0

0.5

1.0

1.0
0.0

label space 𝒴

labelling function: 𝑓
𝑦	 = 	𝑓(𝑥)

𝐏𝒔

labelling function: 𝜑
𝑓(x)= 𝜑(x) coincidentally for any sample in 𝐏𝒔

Wang, et al., Toward learning human-aligned cross-domain robust models by countering misaligned features. UAI 2022



Cross-domain Generalization
• Training models from one domain and test it in the other
• These two domains are similar but different

• Similar: there is a shared labelling function
• Different: the training domain has an additional labelling function
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Cross-domain Generalization
• This understanding of data is cross the understanding of domain

generalization
• Domain adaptation
• Domain generalization
• Beyond Domain Generalization
• Bias-in-Data

• (adversarial robustness)
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Generalization Error Bound of Robust ML
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𝜀𝐏! 𝜃 ≤ ̂𝜀𝐏" 𝜃 + 𝜙 Θ, 𝑛, 𝛿 + 𝑐 𝜃

𝑐 𝜃 = "
#
∑(%,')∈(*,+)𝐏" 𝕀[𝜃 𝑥 = 𝑦] 𝑟 𝜃, 𝒮 𝜑, 𝑥

the accuracy gain because 𝜃	learns 𝜑

small ̂𝜀𝐏! 𝜃

small 𝑐 𝜃
𝒮 𝜑, 𝑥  (i.e., the features the superficial

function uses) is given

𝜑 is given

a robust model

usually guided by additional
domain knowledge

Theorem (the Curse of Universal Approximation)
(Informal) Under multiple assumptions, with probability at least 1 − 𝛿, we have 

Wang, et al., Toward learning human-aligned cross-domain robust models by countering misaligned features. UAI 2022



Principled Understanding of Robust ML

upper bound of
𝑐 𝜃

𝕀[𝜃 𝑥 = 𝑦] ≤ 1

𝒮 𝜑, 𝑥 minimizing 
̂𝜀𝐏! 𝜃  and bound

worst-case data augmentation

min
"

3
($,&)∈(),*)𝐏!

max
+𝒮 $,& ∈,($)𝒮 $,&

𝑙(𝜃 𝑧 , 𝑦)	

assumption (e.g., in image classification,
perturbation of image texture or
background will not alter the fact a dog
is a dog)

encoder/decoder
split

𝜃 𝑥 = 𝜃*(𝜃+(𝑥))

separation of
functions

min
"',"(

3
($,&)∈(),*)𝐏!

𝑙(𝜃-(𝜃.(𝑥)) , 𝑦) − 𝑙(𝜑(𝜃. 𝑥 ), 𝑦)	𝜑 minimizing 
̂𝜀𝐏! 𝜃  and 𝑐 𝜃

invariance to additional label
• standard hypothesis space
• estimate the parameters with

minimizing loss for additional
labels

e.g., machine learning
countering domain-specific
signals with a domain IDs
(domain adversarial network)

design of supporting model
• design the hypothesis space

according to the data and task
• estimate the parameters by

minimizing classification loss

e.g., machine learning
countering bias signals with a
designed model of bias
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Principled Understanding of Robust ML

small ̂𝜀𝐏! 𝜃

small 𝑐 𝜃
robust model

𝜀𝐏! 𝜃 ≤ ̂𝜀𝐏" 𝜃 + 𝜙 Θ, 𝑛, 𝛿 + 𝑐 𝜃
the Curse of Universal Approximation

1. Worst-case Data Augmentation (Adversarial Training)
• Regular data augmentation

• With alignment regularization (consistency loss)

2. Regularizing the hypothesis
• With assumed function space of invariance

• Learning by countering superficial/spurious
features, debiasing

• With assumed label space of invariance
• Learning embedding to fool an additional classifier,

e.g., domain adversarial neural network

3. Worst-case Sample Reweighting (group-DRO Methods)
• Reweighting samples with learned functions 15



Principled Understanding of Robust ML
• Visual Summary

16



Data Augmentation Based Methods
• Generating the data for the domain of interest
• With domain information, e.g.,

• Cycle-consistent adversarial adaptation

17



Model selection and Optimization for OOD
• Mixup-guided optimization and selection: A mixup-guided solution

• OPTD: an OOD dataset to balance classification loss and regularized items
• VALD: an OOD dataset to select the best models

• Lu et al. Towards Optimization and Model Selection for Domain Generalization: A Mixup-guided Solution. KDD workshop 
2023. https://arxiv.org/abs/2209.00652

https://arxiv.org/abs/2209.00652


Data augmentation: SDMix
• SDMix: Semantic-Discriminative Mixup

• Semantic-aware Mixup: overcome the semantic inconsistency brought by domain differences
• Enhancing Discrimination: introduce large margin loss to overcome discriminative slackness 

• Lu et al. Semantic-Discriminative Mixup for Generalizable Sensor-based Cross-domain Activity Recognition . IMWUT 
2022. https://arxiv.org/abs/2206.06629

https://arxiv.org/abs/2207.12020


Data Augmentation Based Methods
• Generating the data for the

domain of interest
• More general approach

(without specific domain
information)

• We iteratively force the model 
to predict without the features 
it considers predictive in the 
previous iteration. 

∂l/∂zi
∂l/∂zi
∂l/∂zi
∂l/∂zi

representation and gradient

∂l/∂zi
∂l/∂zi
∂l/∂zi
∂l/∂zi

representation and gradient

∂l/∂zi
∂l/∂zi
∂l/∂zi
∂l/∂zi

representation and gradient

Wang H.*, Huang Z.*, et al., Self-Challenging Improves Cross-Domain Generalization. ECCV 20, Oral 20



Results:
It Improves Accuracy on ImageNet Classification

• Self-challenging can improve 
ImageNet classification accuracy with 
a margin that bridges the gap of 
model sizes. 
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Top-1 Accuracy
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Regularization Based Methods
• Regularizing for domain invariance

Adversarial Discriminative Domain Adaptation
(Split the feature extractor into two copies)

Adversarial Discriminative Domain Adaptation

Simultaneous Deep Transfer Across Domains and Tasks
(More information to align for domain classifier)

Zero-Shot Deep Domain Adaptation
(Train domain classifier with additional data) 22



Regularization Based Methods
• Extensions to studying machine learning

fairness
• Augmentation based methods

• Learning Adversarially Fair and Transferable 
Representations

• Regularization-based methods
• One-network adversarial fairness.

23



Algorithm: DIFEX for domain-invariant features
• DIFEX: Domain-Invariant Feature Exploration
• What exactly are the domain-invariant features?
• Internally-invariant features: captures the intrinsic knowledge of the signal
• Mutually-invariant features: stays invariant w.r.t. other domain data

• Lu et al. Domain-invariant feature exploration for domain generalization. TMLR 2022. https://arxiv.org/abs/2207.12020

https://arxiv.org/abs/2207.12020


New perspective: dynamic distributions
• Non-stationary time series
• The statistical properties are changing over time
• We formulate it as TCS: temporal covariate shift

Raw data

Probability 
distribution

B

Temporal Covariate Shift:

?

A Unseen testC Covariate shift: 

Temporal Covariate shift: 

Construct worst-case distribution scenario Match the big distribution gap Good model



Algorithms
• AdaRNN: Adaptive RNNs

· DIVERSIFY

• Du et al. AdaRNN: adaptive learning and forecasting fr time series. CIKM 2021.
• Lu et al. DIVERSIFY to generalize: learning generalized representation for time 

series classification. ICLR 2023.



Experimental results
• Forecasting

Weather forecasting and electric 
consumption

Human activity 
recognition

· Classification

· Better domain split effects · Really characterize the latent 
distributions inside a time series!



Removing batch effects from scRNA data
• Model

Ge, Songwei, et al. "Supervised adversarial alignment of single-cell RNA-seq data." Journal of 
Computational Biology 28.5 (2021): 501-513.

28



Removing batch effects from scRNA data
• Algorithm:
• two types of sample pairs are considered

• Samples from the same domain, with different cell types
• Samples from different domains, with the same cell type

• Results:
• High numerical results in classification of cell types
• visualization

Ge, Songwei, et al. "Supervised adversarial alignment of single-cell RNA-seq data." Journal of 
Computational Biology 28.5 (2021): 501-513.

29



A Sentence Speaks a 
Thousand Images
• Regularizing the representations

invariant from different domains
• Different loss functions for the

distances between invariant (text) vs.
images

30ICCV 2023: A Sentence Speaks a Thousand Images: Domain Generalization through Distilling CLIP with Language Guidance



Robust Machine Learning
• So far, two branch of solutions:
• Introducing invariance to the models (regularizing hypothesis space)

• So that the model does not learn information different between source and target domains

• Introducing new augmented data
• Augment the data so that we will be able to train models with samples more like the test domain

• How about we just put these things together

31



Existing Solutions

(Worst-case) Data Augmentation Regularizing Hypothesis Space

• (Geirhos et al., 2019)
• (Hermann and Kornblith, 

2020)
• (Wang et al., 2022)
• (Hendrycks et al., 2019)
• (Mahabadi et al., 2020)

• (Shankar et al., 2018)
• (Huang et al., 2020)
• (Lee et al., 2021)
• (Huang et al., 2022)
• (Madry et al., 2018)

• (Wang et al., 2019)
• (Bahng et al., 2019)
• (Wang et al., 2019b)
• (He et al., 2019)
• (Mahabadi et al., 2020)
• (Nam et al., 2020)

• (Ghifary et al., 2016)
• (Rozantsev et al., 2018) 
• (Motiian et al., 2017) 
• (Li et al., 2018)
• (Carlucci et al., 2018)

Usually requires specified knowledge about how
to augment the data to introduce invariance

Usually requires specified knowledge from
additional labels or functional invariance

32



A Simple Heuristic
(simply combining these two branches)

(Worst-case) Data Augmentation Regularizing Hypothesis Space

Usually requires specified knowledge about how
to augment the data to introduce invariance

Usually requires specified knowledge from
additional labels or functional invariance

Worst-case Data Augmentation with Regularization

• Generic data augmentation through frequency domain
• Worst-case selection from choices of perturbation radii

• Additional classifier to regularize the learned embeddings
• Augmentation offers labels of domains (original vs. augmented)

33



Empirical Results
• Performances on 9-class ImageNet

regularization data augmentation worst-case aug + regularization

(and ablation study)

Wang, et al., Toward learning human-aligned cross-domain robust models by countering misaligned features. UAI 2022 34



A Classifier Might Not Be Necessary

• This classifier (or its extensions) are there to push
the embeddings invariant from two domains

• Not necessary if we have more efficient methods
• Especially in the data augmentation settings

If we are doing data augmentation, do
we really need the domain classifier
there?

35



36

A Classifier Might Not Be Necessary
• Alignment regularization pushes the model to learn the same

representations from an image and its augmented counterpart.

Wang, et al., Toward Learning Robust and Invariant Representations with Alignment Regularization and Data Augmentation, KDD 2022



Alignment Regularization
• ℓ2 distance and cosine similarities 

• internal representations 
• speech recognition
• (Liang et al., 2018)

• Squared ℓ2 distance
• logits 
• adversarial robust vision models
• (Kannan et al., 2018)

• KL divergence 
• softmax outputs 
• adversarial robust vision models
• (Zhang et al., 2019a) 

• Jensen–Shannon divergence 
• embeddings 
• texture invariant image classification 
• (Hendrycks et al., 2020)

• and many others…

37

If there is a general method that can work
well across applications, and enjoys some
theoretical support?

Wang, et al., Toward Learning Robust and Invariant Representations with Alignment Regularization and Data Augmentation, KDD 2022



Our Solution:
Squared l2 Norm as Alignment Regularization

• We recommend using squared l2 norm as regularization

38

Empirically

We conduct a set of experiments and
find out squared l2 norm is the best 
choice

Theoretically

We complement our empirical study 
with a formal proof 
• We show a bounded worst-case error 

(robustness)
• We connect the regularization to the 

measure of invariance

Wang, et al., Toward Learning Robust and Invariant Representations with Alignment Regularization and Data Augmentation, KDD 2022



• Rotation-invariant Classification 

300° 315° 330° 345° 0° 15° 30° 45° 60°

Base ST GC ETN DA WDA DA-l2 WDA-l2

0

0.2

0.4

0.6

0.8

1

Comparison to the Top-performing Methods:
Results

Average

39

The simple method we identified can compete with top-performing methods 
specially designed for each task.

Wang, et al., Toward Learning Robust and Invariant Representations with Alignment Regularization and Data Augmentation, KDD 2022



Re-weighting Based Methods

• Targeting a specific type of distributional shift
• There are some minor samples in the training set

• Solutions:
• Give majority samples lower weights

• Group-DRO

• Give majority samples even negative weights
• VREx

40



Group-DRO extensions
• Adversarially reweighted learning (ARL)
• uses another model to identify samples

• Learning from failures (LFF)
• trains another model by amplifying its early-stage predictions

41



Is there a lost of domain generalization to search?
(maybe, maybe not)
• In the search of lost domain generalization
• (Gulrajani and Lopez-Paz 20’)
• The developed domain generalization methods cannot perform well once taking the

averaged performances across a set of hyperparameters
• ERM can is the best in comparison to the averaged performances

• A counterpoint
• Extensions of ERM will probably be at least as good as ERM

• Unless with an unrealistic choice of hyperparameters
• Worst-case feature methods with too many features to be dropped
• Worst-case sample methods with too many samples to be dropped (in comparison to batch size)

Wang, et al., The two dimensions of worst-Case training and their integrated effect for out-of-domain generalization, CVPR 2022 42



• A closer look at the datasets
• (Ye et al 2020)
• There are two kinds of diversity shift in the datasets
• It’s probably not the best to consider the shift as one thing

• Diversity shift (the shift of support)
• Correlation shift (the shift of density)

Is there a lost of domain generalization to search?
(probably not, again)

43



Existing Solutions
(and the previous best ones in each)
• If we split the datasets into two polarities
• No method can do the best across these two settings

diversity shift dataset

correlation shift dataset

worst-case data augmentation family

worst-case sample reweighting family

44



The two dimensions of wort-case training

𝜀𝐏! 𝜃 ≤ ̂𝜀𝐏" 𝜃 + 𝜙 Θ, 𝑛, 𝛿 + 𝑐 𝜃

sa
m
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m

en
sio

n

feature dimension

worst-case data augmentation family

• perturbing features that once considered
predictive by the model, constructed data
harder for the model to learn

worst-case sample reweighting family

• weighting the samples that are harder for
classification more

worst-case along two dimensions
(W2D)

45



The two dimensions of wort-case training
• Design Rationales

• Through the integration of principled
understanding
• Also inspired by a psychological prior

• Method Details
• Acceleration with hard samples
• Consider all samples for performances upon

convergence

46



Results

diversity shift dataset

correlation shift dataset

top position by inheriting the power of RSC

top position (tie) by inheriting the power of
worst-case sample reweighting methods

Wang, et al., The two dimensions of worst-Case training and their integrated effect for out-of-domain generalization, CVPR 2022 47



Summary
• Master equations and principled solutions of learning robust models

48
Liu, H., Chaudhary, M., & Wang, H. (2023). Towards Trustworthy and Aligned Machine Learning: A Data-centric Survey with Causality 
Perspectives. arXiv preprint arXiv:2307.16851.



Implications
• A glimpse into large models
• The connection between large model solutions to ERM

• Fine-tuning

• Parameter-efficient fine-tuning

• Prompting

49



Implications
• A glimpse into trustworthy solutions of large models
• Data augmentation based

• Regularization-based

50

Guo, Yue, Yi Yang, and Ahmed Abbasi. "Auto-debias: Debiasing 
masked language models with automated biased prompts." 
Proceedings of the 60th Annual Meeting of the Association for 
Computational Linguistics (Volume 1: Long Papers). 2022.

Wu, Hui, and Xiaodong Shi. "Adversarial soft prompt tuning for cross-
domain sentiment analysis." Proceedings of the 60th Annual 
Meeting of the Association for Computational Linguistics (Volume 1: 
Long Papers). 2022.



For More Information
• Most of the contents are from our latest survey
• Data-centric view of Trustworthy Machine Learning 

• in Robustness, Security, Interpretability, Fairness
• Connection of methods via Pearl's Causal Hierarchy 
• Trustworthiness and techniques of large pretrained 

models 
• Opportunities for new methods in large models
• Access: http://trustai.one

• Also checkout Jindong’s first-ever survey on domain generalization
• Wang, Jindong, et al. "Generalizing to unseen domains: A survey on domain 

generalization." IEEE Transactions on Knowledge and Data Engineering (2022).
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http://trustai.one/

