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Overview of 

trustworthiness



The “Clever Hans” story

 In late 1900s, there is a horse that can
 read, do arithmetic, listen to music, and distinguish colors

A brilliant horse?

Regular response to his master



Prompt injection for ChatGPT

https://arxiv.org/abs/2307.15043

https://arxiv.org/abs/2307.15043


Machine learning

CIFAR

MS COCO

MNIST

3

Cat

…… ……

Data

Model

Output

CNN

Transformer

RNN

…

• How reliable are the predictions?

• How robust are models to new data?

• How secure to malicious users?

• How can you learn from limited data?

• …



What is trustworthy ML?

Robustness

Generalization

Interpretability

Fairness

Privacy

Trustworthy
machine learning

A system’s ability to 

withheld malicious attack, 

e.g., adversarial attack.

Perform well for unexpected 

and unseen inputs.

We care not only about performance, 

also how to explain the results.

An algorithm should 

perform exactly the same 

for different groups.

Great performance 

should come without 

sacrificing privacy.



Are current AI models trustworthy？

https://incidentdatabase.ai/entities/facebook/

https://arstechnica.com/information-technology/2019/04/researchers-trick-tesla-autopilot-into-steering-into-oncoming-traffic/

https://www.zdnet.com/article/googles-best-image-recognition-system-flummoxed-by-fakes/

https://new.qq.com/rain/a/20220724A00GAT00

https://www.fastcompany.com/90240975/alexa-can-be-hacked-by-chirping-birds

https://mashable.com/article/beware-chatgpt-ai-prompt-injections

https://incidentdatabase.ai/entities/facebook/
https://arstechnica.com/information-technology/2019/04/researchers-trick-tesla-autopilot-into-steering-into-oncoming-traffic/
https://www.zdnet.com/article/googles-best-image-recognition-system-flummoxed-by-fakes/
https://new.qq.com/rain/a/20220724A00GAT00
https://www.fastcompany.com/90240975/alexa-can-be-hacked-by-chirping-birds
https://mashable.com/article/beware-chatgpt-ai-prompt-injections


Adversarial robustness

 Adversarial examples
 Adversarial examples can easily fool the system

 Robustness is the model’s ability to withheld being fooled



Generalization

 Out-of-distribution generalization
 Models should have the ability to generalize to unseen samples



Interpretability

 Making AI models explainable



Fairness

 Fairness
 The ability to perform equally well for different groups



Privacy

 Performs well at no cost of privacy leakage

Carlini N, Tramer F, Wallace E, et al. Extracting training data from large language models. USENIX Security 21.



Trustworthiness in the era of large models

 A world dominated by large models



Why do we care?

• The advantages and limitations of existing ML algorithms

• Build better algorithms

A better understanding of ML models and algorithms

• 90% of ML problems are not about trustworthiness, but the remaining 10% will 

irreversibly destroy everything 

Better security control and risk management

• Making AI more responsible

• Security management and risk control

Better co-existence of humans-AI
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Robust machine learning
Jindong Wang

Microsoft Research



A holistic roadmap to robustness

 Given a model, robustness is from the data level

• Goodfellow I J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples[J]. arXiv preprint arXiv:1412.6572, 2014.

• Sohn K, Berthelot D, Carlini N, et al. Fixmatch: Simplifying semi-supervised learning with consistency and confidence[J]. Advances in neural 

information processing systems, 2020, 33: 596-608.

 Data quantity: 

 Limited downstream data: stability to very limited 

training data

 Data quality:

 Adversarial examples: Resilience to impercetible 

perturbations

Adversarial attack Semi-supervised learning



Data quality: adversarial attack

Basics of 

adversarial attack 

(mostly on CNNs)

Emerging attacks: 

adv. examples in 

transfer learning

Modern

adversarial 

robustness: Robust 

Transformers

There are tons of tutorials on adversarial robustness. What new in this one?



The accuracy-robustness trade-off

Robustness

Accuracy

Su et al., Is Robustness the Cost of Accuracy? A Comprehensive Study on the Robustness of 18 Deep Image Classification Models, ECCV 2018.



Attack settings: white and black-box attacks

Setting Network Output BP?

White-box

Black-box with 

soft labels

Black-box with 

hard labels

Confidence

scores

Confidence

scores

Hard labels

……

Softmax



White-box attack

 A general view of attack operation

Distance between the original 

and the adversarial input
Loss function, usually use cross 

entropy or contrastive loss

• N. Carlini, D. Wagner. Towards Evaluating the Robustness of Neural Networks. IEEE Symposium on Security and Privacy, 2017 

• Chen et al. EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples, AAAI 2018 



Black-box attacks

 Setting: with soft labels
 The attacker has no access to the network parameters and architecture

 So, they can only query the network outputs to get probability outputs

Confidence

scores

Hard label

Dog

 Setting: with hard labels
 They can only query the network outputs to get hard-label multi-class outputs



Black-box attack with zeroth-order optimization

 The gradient cannot be computed in black-box setting

 How?
 ZOO: approximate gradient by symmetric difference quotient to estimate the gradient:

 However, need O(d) queries to estimate a gradient

 ImageNet: d = 299*299*3 > 268K 

 100 iterations => 26.8 million queries
• Chen et al., ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep 

Neural Networks without Training Substitute Models. AISec@CCS 2017 



Optimization-based hard-label attack

 Reformulate the attack optimization problem

 Cannot compute the gradient of 𝑔 

 However, can compute the function value of 𝑔 via query

 Binary search + fine-grained search
𝜃: The direction of adversaria example



Emerging threats to transfer learning

• Attacks in transfer learning:

Dog… 

Dog… 

+

Mimic internal 

representations

• The first K layers are copied from the teacher and fixed.

• The remaining N-K layers are fine-tuned.



Vulnerability of DNN models

 DNN models are not safe

 Defect inheritance: fine-tuning can’t help

[1] https://towardsdatascience.com/adversarial-attacks-in-machine-learning-and-how-to-defend-against-them-a2beed95f49c

[2] Gu et al. BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain. arXiv 1708.06733.

✓ Backdoor attack: Hidden malicious logic is 

injected into the model purposely [2]

✓ Adversarial attack: Obtain adversarial examples 

using adversarial training to fool the model [1]

52.58% to 97.85% defect inheritance rate!

https://towardsdatascience.com/adversarial-attacks-in-machine-learning-and-how-to-defend-against-them-a2beed95f49c


Existing research

 Can transfer learning models be attacked? 
 Adversarial attack on transfer learning models [Wang et al.’18] 

 Generate salient features, then perturb the inputs [Ji et al.’18]

 Softmax layer is easy to attack [Rezaei et al.’20]

 How to defend?
 Train from scratch: best defense, worst performance

 Fine-tune: worst defense, best performance

 Fix-after-transfer

 fine-tune, then use defense: expensive and poor effectiveness due to small data

 Fix-before-transfer: randomly initialize the student, then extract teacher knowledge

 Renofeation [Chin et al.’21]: add dropout, feature regularization, and stochastic weight average; not end-to-end

• [Wang et al.’18] Wang B, Yao Y, Viswanath B, et al. With great training comes great vulnerability: Practical attacks against transfer learning. USENIX Security’18.

• [Ji et al.’18] Ji Y, Zhang X, Ji S, et al. Model-reuse attacks on deep learning systems. CCS’18.

• [Rezaei et al.’20] Rezaei S, Liu X. A target-agnostic attack on deep models: Exploiting security vulnerabilities of transfer learning. ICLR’20.

• [Chin et al.’21] Chin et al. Renofeation: A Simple Transfer Learning Method for Improved Adversarial Robustness. CVPR’21 workshop.

Yes!



ReMoS approach

 ReMoS: Relevant Model Slicing
 Given a DNN model 𝑀 and a target domain dataset 𝐷, ReMoS is to compute a subset of 

model weights that are more relevant (bounded by a threshold) to the inference of samples in 

𝐷 and less relevant to the samples outside 𝐷.

Task-specific

knowledge

Large-scale dataset

Complex models

Pre-trained model

Advanced training strategy

Small-scale dataset

Different downstream tasks

Limited resource

Common

knowledge

For common tasks

Zhang et al. ReMoS: reducing defect inheritance in transfer learning with 

relevant modelslicing. ICSE 2022. 



ReMoS approach

 ReMoS
 Coverage frequency profiling: compute coverage frequency of each weight → support of student task

 Ordinal score computation: compute score of each weight based on teacher weight and coverage frequency

 Relevant slice generation: identify the relevant weights

 Fine-tuning: vanilla fine-tune



ReMoS approach

 Coverage frequency profiling
 Neuron coverage: find the neuron whose activation value is large than a threshold 𝛼

 On dataset 𝐷𝑆

 Weight coverage:

 Sum of the neuron coverage frequency of two neurons that this weight connects

 Ordinal score computation
 Formulation:

 To unify the value range



ReMoS approach

 Relevant slice generation
 Identify which weights should be included based on ordinal scores (𝑡𝜃 is the slice size, not 

value size)

 Fine-tune
 Traditional fine-tune

 Advantage
 Less computation overhead: only forward-pass using the student dataset once

 No need to know the student task in advance

 Agnostic to DNN architectures

Weights inside 𝑠𝑙𝑖𝑐𝑒(𝐷𝑆): Fine-tune from teacher

Weights outside 𝑠𝑙𝑖𝑐𝑒(𝐷𝑆): Random initialization



Effectiveness

 CV results
 Better ACC

 Lower DIR

Backdoor attack

Adversarial attack

Neuron coverage attack

Sacrifices <2% accuracy and 

reduces >75% inherited defects



Effectiveness

 NLP results
 Defect is more severe in NLP

 Ours is significantly better

 ReMoS reduces 50% to 61% DIR, only 

sacrificing 3% acc at most

Backdoor attack

Adversarial attack



Interesting observations

 Low-level vs. high-level layers
 Weights from high-level layers are excluded

 Aligns with DNN transferability [1]

[1] Yosinski J, Clune J, Bengio Y, et al. How transferable are features in deep neural networks? NIPS 2014.

 Accuracy vs. attack tolerance
 Seek the balance in real applications

 Efficiency
 Almost the same as vanilla fine-tuning

 Design efficient algorithms in the future



Improving Generalization of Adversarial Training

 Adversarial Training (AT) improves adversarial robustness but at the 

cost of generalization ability.
 Robust Critical Fine-Tuning (RiFT) fine-tunes non-robust critical layer, we improve the 

generalization while maintain adversarial robustness.

Kaijie Zhu et al. Improving Generalization of Adversarial Training via Robust Critical Fine-Tuning. ICCV 2023.



Improving Generalization of Adversarial Training 

 We verify the effectiveness of RiFT across different networks, 

datasets, and adversarial training methods.

Kaijie Zhu et al. Improving Generalization of Adversarial Training via Robust Critical Fine-Tuning. ICCV 2023.



Adversarial robustness of transformers

 Self-attention (transformers) is the standard model for CV and NLP

• Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. NIPS 2017.

• Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021.



Self-attention is more robust than LSTM

 Why?
 Change of a word does not change the attention too much

 Attention is highly sparse

On the Robustness of Self-Attentive Models, ACL’19.



Understanding the robustness of Vision Transformers

 Explore different aspects of ViT
 ViT has better robustness than CNN when there are larger pre-training data

 Increasing model size and reducing patch size can boost robustness performance

 Transformer is more robust than CNN w.r.t. adversarial examples with same training data

 ViT is still robust when removing MLP layer

Bhojanapalli S, Chakrabarti A, Glasner D, et al. Understanding robustness of transformers for image classification. ICCV 2021.



Intriguing properties of Vision Transformers

 Explore other properties of ViT
 ViT is more robust to occulution: mask 80% can still has 60% accuracy

 ViT is better at recognizing shapes while CNN relies on textures

 Pre-trained ViT is more robust in zero-shot and long-tail settings

 ViT is robust to spatial structure and patch order

ViT is robust to all these scenarios.

Naseer M M, Ranasinghe K, Khan S H, et al. Intriguing properties of vision transformers. NeurIPS 2021.



Other experiments of ViT robustness

• [1] Paul S, Chen P Y. Vision transformers are robust learners. AAAI 2022.

• [2] Bai Y, Mei J, Yuille A L, et al. Are transformers more robust than cnns? NeurIPS 2021.

• Aldahdooh A, Hamidouche W, Deforges O. Reveal of vision transformers robustness against adversarial attacks[J]. arXiv preprint 

arXiv:2106.03734, 2021.

 Key takeaways:
 ViT is more robust than CNN [1]

 The robustness of ViT is not determined, but controlled by data size and training recipe [2]



TAG: Gradient Attack on Transformer-based LMs

 Directly use adversarial attack on Transformers

Deng J, Wang Y, Li J, et al. Tag: Gradient attack on transformer-based language models[J]. arXiv preprint arXiv:2103.06819, 2021.



DBIA: Data-free Backdoor Injection Attack

 Backdoor attack against Transformers
 Pre-training stage: generate poison data to minimize the distance to pre-trained attention

 Attack stage: Fine-tune some neurons based on their activation value

Lv P, Ma H, Zhou J, et al. Dbia: Data-free backdoor injection attack against transformer networks[J]. arXiv preprint arXiv:2111.11870, 2021.



TrojViT: Trojan Insertion in Vision Transformers

 Replace area-wise trigger with patch-wise trigger
 Distribute triggers to different patches to increase the attack success rate

Zheng M, Lou Q, Jiang L. Trojvit: Trojan insertion in vision transformers. CVPR 2023.



Improve the robustness of ViT by architecture design

 RVT: robust vision 

transformer
 CNN→patch embedding

 Position embedding: has almost no 

influence on robustness

 Transformer block: has almost no 

influence on robustness

 Head number: more heads more 

robustness

 Feedforward network→Conv FFN

 Classification token→global average 

pooling

Mao X, Qi G, Chen Y, et al. Towards robust vision transformer. CVPR 2022.



Improve the robustness of ViT by training strategy

 Improved training strategy:
 Pretraining is helpful

 Use CutMix and Mixup for data 

augmentation

 SGD is better than Adam for 

optimizers

 Piece-wise learning rate scheduler 

is better than cyclic

 Gradient clipping is helpful

Mo Y, Wu D, Wang Y, et al. When adversarial training meets vision transformers: Recipes from training to architecture. NeurIPS 2022.



Improve the robustness of ViT by regularization

 Robust Vision Transformer
 Transformer is the key module in today’s large models

 Improve the robustness of ViT can enhance large model robustness

 Recall adversarial training

 Lipschitz continuity

How to easily improve the robustness of ViT?



Specformer

 Core idea
 Self-attention is a linear module; reformulate self-attention as linear functions



Specformer

 MSVP: maximum singular 

value penalization

 Power iteration for 

acceleration

Hu et al. SpecFormer: Guarding Vision Transformer Robustness through Maximum Singular Value Penalization. In review.



Data quantity: semi-supervised learning

Basics of semi-

supervised 

learning

Advanced

algorithms for 

SSL

SSL library, 

applications, 

and AI4Science



Machine Learning (ML) Pipeline

 A Machine Learning (ML) problem consists of 3 parts
 ML methods – model, algorithm, and evaluation

 Task – where we apply the model

 Data – on which we train the model

 Recent success of foundation models demonstrates the importance 

of high-quality fully-annotated data

Data
ML

Methods
Task

Model Algorithm Evaluation



High-quality Data is Important

 CLIP [1, 2]
 0.4 billion high-quality image-text pairs

 achieves surprising zero-shot performance 

 2 billion noisy image-text pairs from web

 SAM [3]
 1+ billion masks, 11 million images

 allows prompting an image to obtain any segmentation mask

 GPT-3 [4]
 300 billion high quality tokens

 supervised instruction tuning with human feedback data -> ChatGPT

1. Alec Radford, et al. Learning transferable visual models from natural language supervision. 2021.
2. Mehdi Cherti, et al. Reproducible scaling laws for contrastive language-image learning. 2022.
3. Alexander Kirillov, et al. Segment anything. 2023.
4. Tom Brown, et al. Language models are few-shot learners. 2020.



Semi-supervised learning

 Research background
 Learn a generalized model by relying on a small amount of labeled data

 Problem
 How to guarantee that knowledge can seamlessly transfer from labeled to unlabeled data?

 Transfer criterion: a fixed threshold by Google’s FixMatch[NeurIPS’20]

 Research challenge
 Is the pre-defined fixed threshold for semi-supervised learning enough?

 Can design better thresholding for semi-supervised learning?



Theory

 We derive a theoretical motivation for low-resource learning
 Different class should have different and changing thresholds



Algorithm: FlexMatch

 Fixed vs. flexible threshold
 We should learn different thresholds for different classes

 Our proposal: FlexMatch
 Different for different classes → per-class adaptation

 Lower down thresholds for hard-to-learn classes → encourage difficult classes

 Raise thresholds if already well-learned → keep strict to ensure final acc

 Dynamically adjusted for every class at every time step → automate the process

FlexMatch



Algorithm: FlexMatch

 Technical details
 A curriculum pseudo labeling (CPL) strategy that gradually learn the difficulties of classes

 Cluster assumption: The learning effect of a class can be reflected by the number of samples 

whose predictions fall above the high fixed threshold and into this class.

Warm-upFlexible

Mapping function

Warm-up&Norm



FlexMatch results

 Significant improvement with limited labels.

 Significant improvement with complicated tasks.

 Significant improvement on convergence speed.

 No new hyperparameter introduced.

 No additional computation introduced.

62

• B. Zhang et al. Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling. 
NeurIPS 2021. https://arxiv.org/abs/2110.08263

https://arxiv.org/abs/2110.08263


Algorithm: FreeMatch

 FreeMatch: self-adaptive threshold adjusting scheme
 Adjusting the threshold in an adaptive manner

 Global threshold:

 Better than FlexMatch, esp. extreme labeled case (5.8%+ for 1 label per class)

Local threshold:

Y. Wang et al. FreeMatch: self-adaptive thresholding for semi-supervised learning. ICLR 2023.



Imprecise Label Learning: A Unified Framework 

 Acquiring fully-annotated data with 

precise labels is a challenging and long-

standing problem in ML
 expensive, laborious, time-consuming, error-prone

 Resulting in various types of 

imprecise/limited labels in reality
 multiple candidate labels, noisy labels, fully 

unlabeled data

 Each individual type/combination of 

types of imprecise labels require 

different learning paradigm
 semi-supervised learning, partial label learning, 

noisy label learning, partial noisy label learning, etc.

Hao C, et al. Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations. Arxiv 2305.12715, 2023.



Imprecise Label Learning: A Unified Framework 

 We propose the first unified framework for learning with various imprecise labels

 X – represents input features

 Y – represents precise labels, treated as unknown

 I – represents abstract imprecise label information

• Maximum Likelihood Estimation of  
•  

• can be iteratively solved with Expectation-Maximization (EM) algorithm

•  

• Naturally extend to mixture of any imprecise labels
• first work not only comparable to SOTA methods in each 

setting

• but also outperforms previous sophisticatedly designed 
methods for mixture 

Hao C, et al. Imprecise Label Learning: A Unified Framework for Learning with Various Imprecise Label Configurations. Arxiv 2305.12715, 2023.



Code library: From TorchSSL to USB

 TorchSSL  USB
 A unified semi-supervised 

learning benchmark

 More applications, tasks, 

datasets, and algorithms!☺

 CV, NLP, and Audio☺

 More friendly to small groups

 You may not need many GPUs☺

 Unified benchmark results

 ‘pip install semilearn’ ☺

 APIs, docs, and tutorials☺

https://github.com/TorchSSL/TorchSSL

https://usb.readthedocs.io

https://github.com/microsoft/Semi-supervised-learning

https://arxiv.org/abs/2208.07204

279 GPU days → 37 GPU days

https://usb.readthedocs.io/
https://github.com/microsoft/Semi-supervised-learning
https://arxiv.org/abs/2208.07204


Application: different downstream tasks
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 Semi-supervised learning
 Pre-trained models cannot perform well 

 SSL algorithms can greatly improve their performance in this scenario

 Especially on difficult tasks with extremely limited labels

Rare images Complex tasks Noisy data



Summary of 

robustness

 About robustness research:

 Data quality: Transformer robustness is 

important and still in infancy

 Data quantity: Pay attention to semi-

supervised learning in downstream 

applications
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